пошук:  

>> Саранчук В.І., Ошовський В.В., Власов Г.О.: Хімія і фізика горючих копалин / ch-4.html

Текст-індекс >>

Авторська сторінка
Опублікував:  biletskv

 

ЧАСТИНА IV. ГАЗОПОДІБНЕ ПАЛИВО



33. Природні горючі гази

Природні горючі гази зустрічаються у вільному виді, у виді скупчень у гірських породах земної кори, у розчиненому вигляді ( в підземних водах, нафті), а також у вигляді газових потоків, що переміщаються в земній корі.

Природні гази, в залежності від їхнього складу, поділяють на наступні чотири групи: а) вуглеводні, б) вуглекислі, в) азотні і г) змішані.

До вуглеводневих відносять гази, що містять у своєму складі не менш 50% різних вуглеводнів.

Природні горючі (вуглеводневі) гази, як уже вказувалося, умовно поділяються на власне природні, тобто гази, що добуваються з чисто газових родовищ, і попутні, що добуваються попутно з нафтою у нафтогазових родовищах.

Природні вуглеводневі гази, у залежності від вмісту в них метану, поділяються на сухі, що містять 95-99% метану, і жирні, що містять, крім метану, також і його гомологи (етан, пропан, бутан і ін.).

Природні гази, тобто гази, що добуваються з чисто газових родовищ, відносяться до сухих газів, тому що вміст у них гомологів метану, за рідкісним винятком, незначний.

Усі попутні гази належать до жирних газів, тому що в їхньому складі, крім метану, міститься значна кількість етану, пропану, бутану й ін.

Природні вуглеводневі гази накопичуються в гірських породах, що мають порожнини (піски, вапняки й ін.). В інших породах (глинах, вугіллі) газ накопичується менше через їхню високу щільність і відсутність порожнин (пор, тріщин).

Породи, здатні вміщати і віддавати газ, називаються газовими колекторами. Вони утворюють в товщах гірських порід величезні підземні природні резервуари, зверху і знизу обмежені непроникними породами.

Такі підземні резервуари мають широке горизонтальне розташування й в основному заповнені водою. Газові скупчення займають лише незначну частину таких резервуарів, розташовуючись над водою і притискаючись до верхнього малопроникної границі (породи) підземного резервуара (Рис. 4.1).

Рис. 4.1Родовище газу.

Так як газ у підземних резервуарах знаходиться під значним тиском, то при його розкритті свердловиною газ здатний притікати (фонтанувати) до поверхні з величезною швидкістю. Деякі газові свердловини здатні дати до 6 млн. м3 газу на добу.

Основними проблемами, що виникають при експлуатації газових свердловин, є регулювання тиску і встановлення оптимального режиму добору газу.

Досвід експлуатації газових свердловин показав, що зі свердловини повинна відбиратися тільки частина тієї кількості газу, що вона в стані дати при вільному фонтануванні.

Як уже вказувалося, природні горючі гази складаються в основному з метану і його гомологів. Крім цих компонентів, у природних вуглеводневих газах, як правило, містяться вуглекислота й азот. Вміст вуглекислоти в більшості випадків не перевищує 6-7%. Однак зустрічаються природні гази, у яких вміст вуглекислого газу доходить до 35% і більше. Такі гази називають вуглеводнево-вуглекислими. Наприклад, на Тамані, у районі Карабетовки, відзначений вихід природного вуглеводневого газу, що складається з метану (65,6%), вуглекислоти (31,4%) і азоту (3,0%). В Угорщині є родовище (Тоткомлош), газ якого складається з 50% метану і 50% вуглекислоти.

Вміст азоту в природних вуглеводневих газах, як правило, не перевищує 10%. Однак зустрічаються гази, у яких вміст азоту доходить до 45% вище. Такі гази називаються вуглеводнево-азотними.

Кисень в вуглеводневих газах міститься в незначних кількостях і, як правило, не перевищує 2%.

Вміст сірководню в вуглеводневих газах рідко перевищує 5-6%. Оксид вуглецю і водню в природних газах практично не зустрічається; у деяких попутних газах ці компоненти є, але в незначних кількостях.

Характерною домішкою природних газів є рідкісні гази і, насамперед гелій (у деяких газах вміст гелію доходить до 2%); як правило, у природних газах можна знайти лише сліди рідкісних газів.

Теплота згоряння (Qн) природних газів коливається в межах 25,1-33,5 Мдж/м3, густина по повітрю - у межах 0,56-0,65.

При розгляді закону Генрі видно, що будь-який газ має здатність тією чи іншою мірою розчинятися в рідині. Відповідно до закону Генрі, кількість газу, здатного розчинитися, залежить від природи рідини і газу і від зовнішніх умов (тиску, температури).

Утворившись одночасно нафта і розчинений в ній газ, утворюють нафтогазові пласти.

Так як температура в покладі нафти змінюється мало, то кількість розчинених у нафті газів залежить в основному від тиску в пласті і властивостей розчинених газів.

Розчинність газоподібних вуглеводнів у нафті підвищується зі збільшенням молекулярної маси газу. Різна розчинність вуглеводневих газів приводить до того, що в природних умовах, коли нафта і газ укладені в одному підземному резервуарі, гази сепаруються за рахунок майже повного розчинення в нафті при високих тисках більш важких вуглеводнів.

Тому в підземному резервуарі, у якому нафта залягає разом з газом, частина вуглеводневих газів (більш важких) буде знаходитися в розчиненому вигляді, а частина (головним чином, більш легка: метан, етан) буде знаходитися над нафтою, утворюючи так звану газову шапку (Рис. 3.2). При розкритті пласта свердловиною спочатку починає фонтанувати газ газової шапки, а потім уже, унаслідок падіння тиску, буде виділятися газ з розчину (нафти).





Рис.4.2 Родовище нафти з газовим прошарком.



При цьому спочатку з'являться гази, що мають найменшу розчинність, а при значному зниженні тиску почнуть виділятися гази з максимальною розчинністю.

Деяка частина цих газів виділяється з нафти тільки після виходу її на поверхню. Газова шапка є складовою частиною нафтового покладу, що експлуатується з урахуванням максимального використання пластової енергії газу (його тиску) для фонтанного видобутку. Іншими словами, газові шапки газонафтових родовищ не є самостійними об'єктами видобутку газу.

У деяких випадках газ цілком розчинений у нафті; цей газ експлуатується (добувається) разом з нею. Звичайно газу міститься 200 - 400 м3 на 1 т нафти (цю величину називають газовим фактором). Найбільш часто зустрічаємо прості форми нафтогазових покладів показані на рис. 4.3.



Рис. 4.3 Газонафтові родовища





Наявність у нафті розчиненого газу є позитивним чинником, тому що цей газ трохи збільшує обсяг нафти, знижує її питому і в'язкість, сприяє більш швидкому її припливу до вибою свердловини.

Орієнтовно можна прийняти, що на кожну атмосферу тиску при розчиненні газу в нафті питома вага її зменшується на 0.0001- 0.0002, а обсяг збільшується на 0.1-0.15%.

Газовий фактор видобутку для різних родовищ неоднаковий і залежить від природи родовища і режиму його експлуатації.

Газ, що надходить на поверхню землі разом з нафтою, відокремлюється від неї в декількох пунктах нафтовидобувного і нафтопереробного господарства. Найбільш легкі компоненти вуглеводневих газів відокремлюються від нафти в нафтових трапах, колонках і мерніках.

Найважчі вуглеводневі гази відокремлюються від нафти в газових сепараторах. Трап призначений для відділення (сепарації) нафти і газу і для очищення газу від нафтового пилу.

Відділення газу від нафти і пилу в трапі відбувається в результаті зміни тиску і швидкості газонафтового потоку, що рухається.

Для поліпшення процесу сепарації суміш, що надходить у трап, розприскують, для чого в трапі встановлюють ґрати, відбійники, тарілки й інші пристосування.

Але навіть після проходження трапа в нафті залишається деяка кількість газу, вміст якого буде тим більшим, чим вище тиск у трапі.

Для поділу продукції фонтанів високого тиску (вище 20 атм.) застосовують східчасту сепарацію.

Склад попутних газів залежить від природи нафти, у якій вони укладені в природних підземних резервуарах, а також від прийнятої схеми відділення газу від нафти при виході з свердловини. Застосування чотири ступінчатої системи сепарації дозволяє в значній мірі звільнитися від більш важких газоподібних гомологів метану й одержати попутний газ, близький за складом до природного. Застосування менш опрацьованих схем сепарації і поганий режим їхньої роботи приводить до одержання жирних попутним газом, тобто газів, багатих гомологами метану -- пропаном, бутаном.

Тип нафти і природа розчинених у ній чи газів, що залягають разом з нею, також впливає на склад одержуваних попутних газів.

Попутні гази, отримані з газових шапок нафтового покладу, як правило, будуть містити менше важких вуглеводневих газів, ніж гази, отримані з чисто нафтових родовищ, де вони були цілком розчинені в нафті.

Багато попутних газів є цінною сировиною для одержання зріджених газів і для хімічної переробки. Густина побіжних газів, як і всіх вуглеводневих газів, зменшується з підвищенням вмісту метану. Теплота згоряння попутних газів значно вище ніж газів з чисто газових родовищ і коливається від 39 до 58 МДж/м3.





34. Зріджений газ





Основною сировиною для одержання зріджених вуглеводних газів є штучні і природні нафтові гази:

а) попутний нафтовий газ на газобензинових заводах;

б) газ термічної і термокаталітичної переробки нафти і нафтопродуктів на установках термічного каталітичного крекінгу, піролізу і коксування, алкілювання й інших процесів;

в) штучні гази на заводах синтетичного моторного палива (заводи деструктивно-гідрогенізаційної переробки вугілля і важких нафтопродуктів, синтезу моторного палива, з оксиду вуглецю і водню й ін.);

г) природні гази, що містять крім метану, деяка кількість більш важких вуглеводнів. Тому що в природних газах вміст більш важких вуглеводнів (пропану і бутану) невеликий, то одержують з них рідкі гази дуже рідко;

д) газоконденсатні родовища промислового значення.

Найбільшу цінність для одержання рідких вуглеводневих газів мають попутні нафтові гази. Нафта на виході сепараторів, у залежності від режиму сепарації, також містить значну кількість розчинених у ній важких вуглеводневих газів. Гази, які виділяються з нафти, після сепараторів, містять близько 30% пропану, 30-35% бутану і близько 30% газового бензину. Ці гази, тобто гази, отримані в результаті стабілізації нафти, є цінними для виробництва зріджених газів, що звичайно і вилучаються на газобензинових заводах.

Штучні, заводські нафтові гази, тобто гази, отримані при деструктивній, термічній і термокаталітичній переробці нафти, різко відрізняються за своїм складом від природних газів, як від попутних, так і від природних.

Це розходження полягає в тому, що штучні нафтові гази містять значну кількість ненасичених олефінових вуглеводнів, що є дуже цінною сировиною для безлічі всіляких реакцій органічного синтезу.

У таблиці приведені характеристики газів, одержуваних на промислових установках основних типів деструктивної переробки нафти.



Таблиця 4.1 Типові склади сумішей, одержуваних при деструктивній переробці нафт ( у % мол.)





Компоненти

Метод переробки

Піроліз

газойлю

Піроліз дистилятної фракції

Гази крекінгу

Термічного

Каталітич-ного

Водень

9,1

9,9

3,5

11,7

Азот + оксид вуглецю

-

-

-

15,3

Метан

21,9

24,3

36,8

12,2

Етилен

24,4

22,9

6,7

4,0

Етан

7,6

7,5

29,3

6,8

Пропілен

15,2

13,6

6,5

16,0

Пропан

1,0

1,4

10

8,3

Бутадієн

2,0

2,6

-

-

Ізобутилен

3,8

1,8

2,5

14,3

Бутилен-2

1,0

1,7

-

-

Бутан

0,1

0,1

4,2

10,8

Пентани й вище

12,9

14,4

0,5

0,6



Як видно з таблиці, газ каталітичного крекінгу відрізняється від газу термічного крекінгу високим вмістом вуглеводнів З4. Газ каталітичного крекінгу з хлористим складається в основному з накутану і ізобутану і не містить неграничних вуглеводнів.

Середній вихід вуглеводневих газів, одержуваних при деструктивній переробці нафтопродуктів, складає: при термічному крекінгу 8-14%, при каталітичному крекінгу 16-28%, при піролізі 40-47%.

Вуглеводневі гази деструктивної гідрогенізації вугілля і важких нафтових залишків на відміну від газів деструктивної переробки нафтопродуктів характеризуються практичною відсутністю в їхньому складі неграничних вуглеводнів. Це пояснюється тим, що цей процес протікає в умовах високих концентрацій водню, що у присутності каталізаторів обумовлює цілковите насичення неграничних зв'язків вуглеводнів, що утворюються. Гази деструктивної гідрогенізації вугілля після вилучення з них аміаку, сірководню і відмивання вуглекислоти є дуже багатою сировиною для одержання зріджених газів. Крім газів ароматизації, ці газові суміші містять зовсім незначну кількість неграничних вуглеводнів.

Отже, основними джерелами для одержання паливних рідких вуглеводневих газів (пропан, бутан) повинні служити попутні гази, гази газоконденсатних родовищ, штучні нафтові гази і гази деструктивної гідрогенізації твердого і рідкого палива. Однак варто вказати, що гази термічної і термокаталітичної переробки нафти і нафтопродуктів які містять значну кількість реакційно-здатних неграничних вуглеводнів, насамперед, повинні піддаватися відповідній переробці для їхнього фракціонування з наступним використанням у різних синтезах. У зв'язку з викладеним, процеси одержання рідких вуглеводневих газів будуть нижче розглянуті стосовно до попутних і інших аналогічних газів.

Одним з найбільш важливих процесів переробки попутних і аналогічних газів є процес вилучення з них компонентів газового бензину і компонентів рідких горючих газів. Цей процес називається відбензинуванням нафтових газів. Він складається з двох послідовних операцій: одержання сирого нестабільного бензину і вилучення із сирого бензину стабільного, звільненого від легких компонентів газового бензину.

Перша операція, тобто одержання сирого нестабільного бензину, здійснюється методом компресії, чи адсорбції. Друга операція, тобто одержання стабільного бензину, зовсім вільного від пропану і більш легких вуглеводнів і утримуючого бутан в обмежених кількостях, здійснюється методом чіткої ректифікації.

Для безперебійної і надійної роботи установок відбензинування нафтових газів потрібно, щоб газ-сировина не містив механічних домішок і води. Тому одержання рідких газів починається з очищення вихідного продукту від механічних домішок і води.



35. Гази вугільних родовищ



В останні роки стає усе більш очевидною об'єктивна необхідність вилучення і використання метану вугільних родовищ як енергоносія для промислових і комунальних потреб.

Шахтний метан, як побіжна корисна копалина використовується понад 40 років. На метан вугільних родовищ, як самостійну корисну копалину за рубежем звернули увагу після нафтової кризи 1973 року. У США ці роботи заохочувалися шляхом знижок у податках і кредитах. Запаси метану в США за даними нафтової ради й Інституту газової промисловості складають до глибини 900 м від 8,5 до 14 трлн. м3 при запасах вугілля 2520 млрд.т. У 1998 році за даними агентства охорони навколишнього середовища США з вугільних пластів великої потужності з метаноносністю від 8,5 до 19,2 м3/т добуто й утилізовано близько 10 млрд. м3 метану, що майже в 12 разів більше, ніж у 1997 році. У США експлуатується понад 5000 свердловин, що добувають газ з вугільних шарів. Очікується, що в 2000 році видобуток метану з вугільних родовищ досягне 30 млрд. м3.

Шахтні методи дегазації метану широко застосовуються в Німеччині (ресурси 3-4 трлн. м3), Англії (1,9 -- 2,8 трлн. м3), Австралії (6,0 трлн. м3) і інших країнах. У Польщі (ресурси 1,6 -- 2,0 трлн. м3), Чехії (1,1 -- 1,5), Китаї (25 -- 30 трлн. м3) широко ведуться роботи з використання метану як у процесі видобутку вугілля в шахтах, так і на розвіданих вугільних родовищах. Метан вугільних родовищ на 35 -- 40 % дорожче природного газу, однак з урахуванням знижок, організаційно-виробничих заходів, передбачених спеціальним законодавством у США видобуток метану з вугільних шарів цілком рентабельний.

У Донецькому і Львівсько-Волинському басейнах метаноносність кам'яного вугілля коливається в межах 0,5-25 м3/т, антрацитів до 35-40 м3/т. Ресурси метану в розвіданих кондиційних вугільних шарах до глибини 1800 м коливаються в межах 450-550 млрд. м3. У бокових породах акумульовано в 1,5-2 рази більше вуглеводних газів, ніж у вугільних шарах, тобто в них не менш 1,5-2 трлн. м3 метану. З урахуванням Львівсько-Волинського басейну можна вважати, що вугільні родовища України містять 2,5-3,0 трлн. м3 газу.

Для прогнозування метаноносності вуглепородного масиву створене унікальне устаткування, що дозволяє на реальних зразках вугілля і гірських порід одержувати будь-який напружений стан (у тому числі і нерівнокомпонентний), що відповідає глибині залягання до 10 км. На зазначеному устаткуванні вивчена ефективна поверхнева енергія вугілля, його поведінка в об'ємному нерівнокомпонентному полі стискаючих напруг і закономірності фільтрації метану через вугільну речовину для глибини до 3 км.

На великих глибинах за рахунок нерівнокомпонентності поля чи напруг утворюється додаткова тріщинуватість, рівнозначна максимальній головній напрузі, за якою відбувається фільтрація метану. Для поліпшення метановидалення з вугілля масив необхідно обробляти хімічно активними речовинами чи витісняти адсорбований метан поверхневоактивними речовинами.

Теоретично й експериментально доведено, що метан у викопному вугіллі знаходиться в трьох станах: вільному в транспортних і закритих каналах і порах (в останні він попадає унаслідок твердотільної дифузії), адсорбований на їхній поверхні і розчинений в органіці вугільної речовини. З урахуванням метану, що знаходиться в закритих порах і розчиненого в органіці вугіллі, його кількість у вугіллях, підрахована на піктрометрах ЯМР, повинна бути в 1,6 рази більше кількості, підрахованого за стандартними методиками. На підставі цього вугільні родовища Донбасу варто вважати вуглегазовими.

Газова зональність Донбасу сформувалася в два етапи.

Перший етап -- доінверсійний період розвитку басейну -- характеризується потужним осадонакопиченням з інтенсивним процесом газогенізації і формуванням первинної вертикальної газової зональності, що відбиває газопродукуючі здатності вугленосної товщі і ступінь насичення вугілля і самих газів у залежності від існуючих термодинамічних умов. Другий етап -- період геологічного розвитку прогину -- характеризується інтенсивним перерозподілом газів в осадовій товщі басейну і руйнуванням первинної газової зональності з трансформуванням її в сучасну вертикальну і площинну зональність. Вона обумовлена закономірними змінами колекторських властивостей вмісних порід.

Незважаючи на значні запаси метану у вуглегазових родовищах, добування його з використанням традиційних технологій видобутку, застосовуваних у газодобувній галузі, практично неможливе через особливий характер зв'язку метану з вугільною речовиною в порівнянні зі зв'язками природного газу з газомісткими породами.

До останнього часу ставлення до метану, що виділяється при розробці вуглегазових родовищ, було однозначним -- він "ворог", вилучення його, за невеликими виключеннями, визначається вимогами техніки безпеки. Аналіз діяльності об'єднання "Донецьквугілля" за останні 10 років показав, що з 4,5 млрд. м3 метану, що виділився при видобутку вугілля, 80 % викинуто в атмосферу системами вентиляції шахт, 18 % коптовано системами підземної дегазації і 2 % добуто через свердловини, пробурені з поверхні. Метан, що міститься у вентиляційній суміші, поки що не знайшов застосування в енергетичних цілях. У коптованій метаноповітряній суміші його концентрація досягає в деяких шахтах 60 %, але частіше -- нижче 25 %, через що використання такого метану в енергетиці не перевищує 9 % загальної кількості. Збільшення його частки в найближчій перспективі зв'язано з технологіями, що дозволяють одержати газ з великою концентрацією метану.

Найбільш перспективними є способи дегазації вуглепородного масиву з застосуванням свердловин, пробурених з поверхні. Ідея роботи по створенню технологій дегазації вуглегазових родовищ свердловинами, пробуреними з поверхні, полягає в розробці і впровадженні способів, що дозволяють вилучати газ з концентрацією метану не нижче 90 % для його ефективного використання з одночасним зниженням газовості виробок. Виходячи зі стану перебування метану в газовому колекторі, упроваджені три технології добування метану.

I. Для дегазації масиву, що містить вугільні пласти, породи з розсіяною вугільною речовиною і газоносні пісковики, розроблена технологія, що використовує ефект часткового розвантаження масиву в результаті його підробки, з відводом газу через спрямовані дегазаційні свердловини. Сутність способу полягає в просторовому розташуванні активного стовбура свердловини відповідно до особливостей формування зони повного зрушення вуглепородного масиву при його підробці.

Новим у розробці технології є створення конструкції свердловини, у якій активна частина стовбура в залежності від положення свердловини щодо вибою лави проводиться в зоні повних зрушень по дотичній до напрямку руйнування блоків чи породи до границь зони повного зрушення порід прилягаючих до крайових частин лави. У першому випадку при розриві порід зсув стовбура відбувається в подовжньому напрямку, що завдяки наявності ковзної не зацементованої перфорованої колони в активній частині свердловини не виводить її з ладу. Такий механізм деформування найбільш ймовірний при наявності порід, перетнутих активною частиною свердловини, в основному однорідних за фізико-механічними властивостями і характеру руйнування на окремі блоки. У другому випадку за рахунок розміщення активної частини стовбура в незруйнованній частини масиву він зберігається навіть при перетинанні різних літологічних шарів порід, причому основна газоприймальна частина свердловини знаходиться в області підвищеного тріщиноутворення і проникності масиву. Для спорудження такої свердловини її нижню частину бурять паралельно одній з границь зони повного зрушення, тобто спрямівної.

II. Попередня дегазація шахтних полів до будівництва застосовується при наявності геологічних структур, що включають антиклінальні, купольні і флекстурні системи, що мають газоносні пісковики, покриті шаром герметизуючих порід, - газові "пастки". Сутність полягає в бурінні дегазаційної свердловини в найбільш продуктивній точці "пастки" з перебурюванням продуктивних за газом горизонтів. Свердловину кріплять обсадною колоною (розрахована на тривалий термін експлуатації), перфорованою на ділянці потужності продуктивних горизонтів.

III. Технологія попередньої дегазації вуглепородного масиву з застосуванням гідродинамічного способу обробки вугільних пластів і газоносних порід. Сутність її полягає в накачуванні робочої рідини в пласт у кількості, яка перевищує природну приймальну здатність пласта, і внаслідок цього в багаторазовому збільшенні проникності пласта за рахунок розкриття і розширення природних тріщин, об'єднаних у єдину гідравлічну систему, орієнтовану до свердловини, по якій після видалення рідкого компонента відбувається транспортування газу із пласта до свердловини.

Завдяки розробленим технологіям досягаються наступні цілі: підвищення безпеки праці при видобутку вугілля; поліпшення екології навколишнього середовища; використання додаткового дешевого енергоносія -- метану; підвищення ефективності вуглевидобувного виробництва. Найбільш ефективним способом використання метану, видобутого при дегазації вуглегазових родовищ, є застосування його як моторного палива (замість нафтового) і для виробництва електроенергії.

Здатність метану вугільних шарів скласти економічну конкуренцію природному газу залежить від чотирьох основних взаємозалежних критеріїв: дебіту і продуктивного життя свердловини; низьких капітальних і експлуатаційних витрат; наявності надійного і конкурентноздатного ринку для збуту видобутого газу; обсягів видобутку (експлуатації). Для успішної розробки метанових покладів, перш ніж говорити про економічну привабливість того чи іншого проекту по видобутку метану, необхідно враховувати й оцінювати всі чотири критерії.

Задача концентрування метану у вихідній структурі може бути вирішена шляхом переведення його у твердий стан у виді кристалогідратів, оскільки гідратна технологія дешевше в порівнянні з іншими технологіями. Існують апаратурні розробки на рівні лабораторних і напівпромислових установок, для Донбасу підготовлений проект "Метан" по утилізації шахтного метану.

 
Навіґація по серверу:   головна сторінка «нотатника» · бібліотека Vesna.org.ua
 
Універсальна перекладачка для будь-яких пар мов
Тут спілкуються про літературу
Rambler's Top100 Тлумачний словник: англійсько-білорусько-польсько-російсько-український

Віртуальна Русь, 2005-2011
Пишіть, якщо що...